
Presented at the 2005 BoF LinuxForum in Copenhagen October 8th 2005

Tapping the Matrix: Revisited1

Carlos Justiniano
ChessBrain Project

http://www.chessbrain.net
cjus@chessbrain.net

Abstract

 The software infrastructure used on Volunteered
Distributed Computing is evolving to meet the diverse
needs of researchers. These emerging systems are
being built using Open Source tools. We describe a
number of such systems in the context of this emerging
field. Throughout this paper we revisit concepts
presented in the April 2004 paper entitled, “Tapping
the Matrix”.

1. Machines are underutilized

Modern machines are capable of executing billions of
instructions in the time it takes us to blink. This fact
may be less surprising when we consider that the
typical machine’s sold today feature processors running
at multiple gigahertz supported by hundreds of
megabytes of main memory.

Surprisingly, the vast majority of personal computers
are underutilized. The truth is many machines are idle
for as much as 90% of an entire day. Even when active,
most applications utilize fewer than 10% percent of the
machines CPU.

Furthermore, this trend shows no signs of reversing,
in fact, conservative estimates indicate that there are
roughly 800 million personal computers in use. About
150 million are Internet connected machines which are
expected to increase to one billion by 2015 [2]

It is an observable fact that the vast majority of the
desktop computers found in businesses, universities and
homes are largely idle. This author works for a
company that has a work force of over 30,000
employees; most employees have one to two machines
at their desk. Most machines are always on, largely
because our IT department monitors machines and
applies software updates as required. Additionally,
many of our high-tech employees have powerful

desktop machines at home which are used to connect to
our offices via our virtual private network (VPN).
While at work most of those machines are largely
inactive. This situation isn’t new.

2. Researchers take notice

During the mid-1990 the general public began
discovering the world-wide-web. This was a time
when early adopters began connecting machines to the
Internet to retrieve email and explore the rapidly
evolving web. Early researchers began to realize that
the large number of machines connecting to the Internet
could potentially be harnessed to form large virtual
supercomputers.

In early January 1996, a project known as, The Great
Internet Mersenne Prime Search (GIMPS) began an
Internet distributed computing effort in search of prime
numbers. The project focused on Mersenne numbers,
numbers which are candidate prime numbers, but not
necessarily prime. A month later the project reported
the involvement of 40 people and about 50 computers.
[3]

The following year, Earle Ady, Christopher Stach
and Roman Gollent began developing software that
would enable network servers to coordinate a large
number of remote machines. An initial goal was to
compete in RSA’s 56-bit encryption challenge.
Encryption schemes are susceptible to brute-force
attacks given sufficiently powerful hardware. The
project was going to need access to a large number of
machines in order to tackle an encryption key space
consisted of 72 quadrillion encryption keys. The group,
which later became known as distributed.net, set out to
harness the distributed computing power of remote
machines to launch a massive encryption key attack.

By October the Distributed.net project discovered the
correct key to unlock the RSA challenge message: “The
unknown message is: It’s time to move to a longer key

length”. In October, the New York Times published an
article on their achievement entitled, “Cracked Code
Reveals Security Limits”. [4]

While both GIMPS and Distributed.net’s efforts
achieved public recognition, another project would go
on to become a household name in distributed
computing circles. In 1998, a group of researchers at
the University of California in Berkeley launched the
SETI@home project. The project uses Internet-
connected computers to aid in the search for
extraterrestrial intelligence. SETI@home captured the
public’s interest and grew to several hundred thousand
contributors.

SETI@home’s appeal was fueled by the general

public’s interests in the possibility of extraterrestrial
intelligence and by the then timely release of films such
as The Arrival and Contact (which was based on Dr.
Carl Sagan’s book).

Another important reason for SETI@home’s success
is due to their use of the screensaver application format.
During the early 1990s screensavers were quite
popular, featuring flying toasters and mildly hypnotic
multi-color swirling patterns. By the time SETI@home
first appeared, the general public already understood
that screensavers become active when machines were
not in use. The perceived non-intrusiveness of
screensavers eliminated the barrier of entry onto
millions of desktop computers.

The project’s success brought with it a considerable
amount of computing power. In 1998 project leader and
researcher, Dr. David Anderson compared,
SETI@home’s distributed computing potential to the
fastest computer built at the time, IBM’s ASCI White.
IBM built the 106 ton, $110 Million dollar system for
the U.S Department of Energy. The supercomputer was
capable of an impressive peak performance of 12.3
TFLOPS. Anderson wrote that SETI@home was faster
and cost less than one percent to operate. [5] Naturally,
the cost savings are due to the fact that SETI@home
computations are distributed and processed on remote
machines which are paid for, operated and maintained
by the general public.

GIMPS, Distributed.net and SETI@home are still
active. GIMPS, the longest running distributed
computing effort, recently discovered the existence of a
prime number consisting of over seven million digits!
Distributed.net has successfully completed a number of
encryption challenges, and SETI@home has been

instrumental in raising public awareness for distributed
computing efforts. During the past few years the
SETI@home group has created the Berkeley Open
Infrastructure for Network Computing (BOINC)
platform which is already helping to launch new
distributed computing projects. We’ll take a brief look
at BOINC later in this paper.

3. Resources exist behind locked doors

Potential distributed computing resources can be found
in millions of locations throughout the world.
However, each location has at least one thing in
common. People, people control access to these
resources. To paraphrase the 1999 block buster movie,
The Matrix: They are the gate keepers. They are
guarding all the doors; they are holding all the keys.

Researchers are faced with the difficult challenge of
creating projects which are of interest to sizable groups
of people. When the public takes interest, the virtual
doors leading to computing resources are unlocked and
machines begin to connect from diverse environments.

Where might machines connect from? We’ll
examine a few general environments where volunteer
computing projects can expect machines to connect
from.

3.1 Individual machines

Millions of homes have computers which are capable of
connecting to the Internet. Many homes contain more
than one machine, often connected via a private home
network. Furthermore, an increasing number of
machines are connected via broadband, always on,
connections. These trends are showing no signs of
diminishing.

Figure 1. The author’s home environment during early ChessBrain
testing. A bit atypical of home environments however, many homes

have machines in different rooms.

3.2 Garage farms and clusters

Some computing enthusiasts go as far as to build and
operate their own clusters. The number of people who
actually do this is larger than one might think! There
exists an Internet sub-culture of enthusiasts who refer to
themselves as DC'ers. They form and participate in
distributed computing teams sometimes numbering in
the thousands.

Figure 2. A ChessBrain contributor proudly displays his server
farm.

3.3 Businesses and Universities

A multitude of machines exist in businesses and
universities throughout the globe. These machines are
often tightly secured and controlled. However, people
control access to these machines and they often grant
access by allowing their machines to run well behaved
distributed computing software.

Figure 3. The 240 node BioCluster which participated during the
ChessBrain.net Guinness World Record attempt in Copenhagen.

4. The Volunteer Computing model

The term “Distributed Computing” is well recognized
by practitioners and participants alike; however, the
term has lost its once specific meaning. The general
media now uses the term “Distributed Computing” to
describe web services and service oriented architecture
(SOA) solutions. A newer term is necessary in order to
differentiate the form of distributed computing which
we’re considering in this paper from the now overused
term.

Distributed computing has been referred to as
“Grassroots Supercomputing” and “Public Computing”
however those terms fall short of what people actually
do when they contribute as part of a distributed
computing project. The inescapable fact is that in order
for distributed computing projects to work they must
have volunteers. The term “Volunteer Computing” has
emerged to describe distributed computing projects
where volunteers supply the necessary computing
resources.

4.1 How volunteer computing works

Most volunteer computing projects (with the exception
of a small number) are implemented as client-server
applications. End users are required to actually place
software on their machines. This is what distinguishes a
volunteer computing project where participation is
“active” from the relatively passive use of web enabled
services. The presence of an active role is why
volunteer computing is often refereed to as Peer-to-Peer
computing rather than client-server from a traditional
web-centric view.

Furthermore, the vast majority of volunteer computing
projects do not rely on the client-side existence of
runtime frameworks such as Java or .NET (although
this will likely change). This impacts project
developers who are forced to implement native
solutions for each platform they wish to support.

These important distinctions introduce additional
levels of complexity which we’ll examine in greater
detail.

4.1.1 A twenty thousand foot view

Fundamentally, users download and install a relatively
small client application which is capable of
communicating with project servers to retrieve
individual work units. Each unit of work contains the

data and in some cases - the instructions that a client
node can use to process the work.

Upon completion the client application sends the
results of the work unit to a project server, which is
responsible for collecting results and performing any
post processing that may be required.

A project server may in turn use the processed results
to determine how to generate newer work units for
subsequent distribution.

Figure 4. Client nodes communicate with web and file servers which
in turn communicate with backend application and database servers.

4.1.3 Client-side considerations

When an end user agrees to run a piece of software on
his / her machine it is because at some level the user
trusts that the software is implicitly safe and well
behaved. We explored issues related to trust in our
original paper entitled “Tapping the Matrix” [1]

A significant obstacle for volunteer computing
project developers is the creation of native client-side
applications. Not only must the software perform the
primary task (the remote computation) it must do so
without requiring additional preinstalled client-side
software. It’s important to streamline the end user
experience of acquiring and operating the project
software – otherwise a usability barrier will be created.
If the software is too difficult to setup – users will leave
to find other projects to participate in.

The challenge for project developers is to create
applications which are relatively self contained (or
include all the files it will need) in an easy to download
and install package. Additionally, developers must
choose which native platforms to support. Because
volunteer computing projects typically require an
extensive number of participants the need to support
the Microsoft Windows platform is somewhat
inescapable. Most project developers choose to support
MS Windows, GNU/Linux and Apple OSX – in that
order.

Further complications become apparent when the
developer realizes that the client-side application must
include the ability to navigate firewalls and proxy
servers. Additionally, communication must be secured
using encryption in order to ensure that the information
sent to the project servers has not been tapered with.

In contrast, project developers have a great deal of
control over the choice of backend solutions. The
introduction of the client-side component presents a
significant hurtle. Fortunately, comprehensive
solutions have emerged in recent years.

5. Open Source Tools

Open Source tools are playing a vital role in the
development of volunteer computing projects. The
decreasing costs of commodity hardware, coupled with
the free availability of highly capable software, have
made it not only possible, but also economically
feasible. Economics however is only one of many
reasons. The strength of the open source community
has given intrepid researchers the sense that they are far
from alone in their efforts.

During the development of the ChessBrain project
we encountered many open source tools. The tools that
project developers choose depend largely on their own
skill sets and personal preferences. In this paper we
restrict our investigation to solutions which do not
require a client-side runtime framework. However, for
developers who don’t consider this an issue we invite
them to consider the use of Java/JXTA/P2P Sockets
and Mono .NET.

At the end of the next section we describe our own
choices and rationales.

5.1 LAMP Building Blocks

The GNU/Linux, Apache, MySQL and P-scripting
language tools form the building blocks for a great
many open source projects. While GNU/Linux itself is
predominantly represented in the LAMP acronym, it is
in fact replaceable by other fine operating systems.

The use of Apache, MySQL and a scripting language
such as PHP, Perl or Python enable developers to create
web accessible services. Because most volunteer
computing projects are client/server applications, the
LAMP toolset is ideal for developers who wish to
construct their own solutions – but don’t want or need
to build the underlying software infrastructure.

The challenge in using LAMP based tools is that the
project developer must still consider how to tackle the
client-side application.

One approach, which we’re adopting for ChessBrain,
is to use a cross-platform development tool such as
WxWidgets and GNU g++ which simplifies the
creation of Windows, Linux and Mac GUI applications.
[4] The solutions we examine next embrace LAMP
tools to varying degrees.

5.2 Jabber

Jabber was first developed in 1998 by Jeremie Miller as
an open source Instant Messaging system and viable
alternative to propriety IM solutions such as the AOL,
ICQ, MSN and Yahoo messengers. [7] Over the years
the underlying Jabber protocol was formalized into the
Extensible Messaging and Presence Protocol (XMPP).
Today, XMPP is endorsed by IBM, Google and many
others.

Jabber quickly outgrew its humble IM beginnings to
embrace XML based messaging. Because, volunteer
computing is largely concerned with message based
communication between servers and clients, the use of
a messaging server is quite natural.

The Jabber community has developed both server
and client-side software which is freely available. The
existing code base offers project developers a
significant advancement in creating their own volunteer
computing solutions based on Jabber.

XMPP is a secure XML streaming protocol which
addresses many of the issues we’ve raised earlier in this
paper. [8]

The only disadvantage with Jabber which we’ve
identified is the dependency on XML and TCP.
However, when XML is properly utilized the
disadvantage may become slight and even insignificant.

5.3 GPU

The Global Processing Unit (GPU) project is a
framework for distributed computing over the Gnutella
P2P network. [9]

GPU developers decided to build their framework
using the propriety Borland Delphi rapid application
development environment (featuring a Pascal dialect).
This presents an obstacle for developers who don’t
know Pascal or haven’t looked at the language recently.

In addition, GPU relies on the Gnutella P2P network
for communication services such as peer and resource
discovery. A consequence of this decision is that many
businesses and universities block Gnutella network
traffic, whereby limiting the number of potential
project contributors.

GPU’s founder Tiziano Mengotti also points out that
the use of Gnutella limits the available pool of
machines to about 2000. This can be a severe
limitation for projects requiring thousands of machines
for effective problem decomposition and distribution.

We believe GPU is an intriguing project with
obstacles that may be overcome with some effort. The
project is actively exploring P2P grid concepts and is
certainly worth a look.

5.4 BOINC

For developers unable or unwilling to invest in creating
custom solutions there is the Berkeley Open
Infrastructure for Network Computing (BOINC)
project. BOINC was created by the SETI@home
group. Today, the framework is used by a growing
number of high profile projects. [10]

BOINC project contributors led by Dr. David P.
Anderson (with the Space Sciences Laboratory at the
University of California at Berkley); have leveraged
their experience on SETI@home to create a generalized
solution intended to meet the needs of most project
developers. Consider the following benefits:

• Open Source. Both client and server software
is freely available.

• Secure client/server communication.
• Built on top of LAMP tools.
• Well defined application programming

interface for developers of both client and
backend server applications.

• End users can chose to participate on one or
more volunteer computing projects.

• Name brand recognition of having your
project recognized and loosely associated with
both BOINC and other high-profile projects.

BOINC is a solution that is ready for use today. The
solution is well documented and well worth deeper
considerations.

5.4.1 BOINC at a 20 thousand foot view

End users download a one to six megabyte file (size
depending on their target platform and project specific
additions.) onto their machine in order to participate on
one or more volunteer computing projects.

On the backend server-side BOINC consists of
several ready-made server components which
communicate with one another and a MySQL database
server. The Apache web server is used with FastCGI
and Python to create web interfaces.

5.4.2 BOINC: a closer view

As a BOINC project developer one is only responsible
for creating the client-side and server-side behavior that
addresses a specific project’s needs. The BOINC
framework contains clearly designated areas where one
is responsible for adding project specific code modules.

The development platform consists of GNU C++ on
the server side, and GNU C++ or Microsoft Visual
Studio / .NET on the client side.

The server environment is expected to be a Linux
box with MySQL, Apache and Python installed.

The BOINC server side solution utilizes the MySQL
database server to store and retrieve project specific
information such as work units, results and user
account information.

The diagram in figure 5 shows a user interacting with
the BOINC system. The client side components are
shown to reside in the user’s machine. Below the
client-server separator line we see the components of
the BOINC backend. The two bold boxes represent the
location of client and server project specific modules.

Figure 5. The BOINC architecture.

5.4.3 BOINC disadvantages

We’re compelled to state that BOINC’s advantages will
very likely outweigh the disadvantages we’ll list in this
section. The information is provided for brief
consideration as one needs to realize that BOINC is
evolving to meet emerging needs. Visit the project
website to learn of new developments.

During the development of the new ChessBrain II
project we identified the following issues while
investigating BOINC.

• Despite BOINC’s tool support, project developers
need to understand and feel comfortable with a
number of technologies in order to gain control
over their project. In short, BOINC doesn’t yet
offer out-of-the box supercomputing – although, at
this time it comes closer than any non-commercial
tool in existence.

• Complete reliance on LAMP excludes MS
Windows environments on the server-side.

• The BOINC project is structured in the traditional
view of client / server architectures. We feel that a
P2P view is the emerging future of volunteer
computing efforts.

• Uses XML over HTTP which may result in larger
communication packets than some project
developers may desire.

• End user machines are seen as compute nodes. We
feel that volunteer computing projects will need to
increasingly embrace server farms, Beowulf
clusters and Grid systems.

According to project leader Dr. Anderson, BOINC was
specifically created for scientists – not necessarily
software developers and IT professionals. The goal of
BOINC is to enable scientists to easily create volunteer
computing projects to meet their growing needs for
computational resources. Toward this end, BOINC is a
remarkable achievement which will continue to have a
profound impact on the future of scientific research.

6. ChessBrain II and msgCourier

ChessBrain is a volunteer computing project which is
able to play the game of chess against a human or
autonomous opponent while using the processing
capabilities of thousands of remote machines.

ChessBrain made its public debut during a World
Record attempt in Copenhagen in January 2004, during
a live game against top Danish Chess Grandmaster,
Peter Heine Nielsen.

What makes ChessBrain unique is that unlike other
volunteer-based computing projects, ChessBrain must
receive results in real time. Failure to receive sufficient
results within a specified time will result in weaker
play. Tournament games are played using digital chess
clocks where the time allotted per game is preset and
not renegotiable. So while ChessBrain waits for results
its clock is counting down.

Our goal on ChessBrain has been to create a
massively distributed virtual supercomputer which uses
the game of chess to demonstrate speed-critical
distributed computation. We chose chess because of
the parallelizable nature of its game tree analysis, and
because of our love for the game. [11] This makes the
project professionally rewarding as well as personally
enjoyable.

The existing design of ChessBrain features a single
Intel P4 3.0 GHz machine. The machine hosts a
database, the ChessBrain SuperNode server and a chess
game server. During the exhibition game against Chess
Grandmaster Nielsen, the machine was overloaded as it

tried to support thousands of remote PeerNode clients.
Prior to the event we speculated that perhaps a
thousand machines might support the chess match. We
were not expecting thousands of machines.
Fortunately, ChessBrain made it through the match
securing a draw on move 34.

We’ve learned a great deal during and after the event.
Our improved understanding is being applied on
ChessBrain II.

Perhaps the single biggest change with ChessBrain II
is that we’re replacing the idea of a single SuperNode
with the concept of clusters of SuperNodes. Our vision
is to see SuperNodes establish P2P relationships among
collaborating SuperNodes. The software for each
SuperNode is being designed to create communities of
machines, where each community can consist of several
thousand PeerNodes.

During the game against Grandmaster Nielsen
several clusters consisting of over 200 machines, and a
few others consisting of 50-100 machines, participated
during the event. At the time ChessBrain wasn’t
designed to take advantage of clusters – like current
volunteer computing projects, ChessBrain was designed
for use on individual machines.

Figure 6. ChessBrain II.

Over time it became clear that ChessBrain software
would have to embrace a wider spectrum of computing
environments which include Beowulf clusters, compute
farms and Grids.

Our vision for ChessBrain has evolved toward P2P
distributed clusters, where volunteer computing
enthusiasts are promoted to virtual cluster operators. In
the parlance of graph theory, our goal has become to
create more hubs. [12]

6.1 ChessBrain II powered by msgCourier

Promoting volunteer computing enthusiasts to virtual
cluster operators is non-trivial. If we opted for a
BOINC-like framework we would have to expect that
each cluster operator would be knowledgeable in the
use of open source tools such as MySQL and Apache.

This simply isn’t practical. On the ChessBrain
project our Microsoft Windows based contributors
outnumber our Linux contributors two to one.

We quickly realized that our new SuperNode
software would have to be a self contained product
which can cluster local or remote machines with ease.

The new SuperNode software is being built on top of
msgCourier in order to address the challenges we’re
facing on ChessBrain II.

The msgCourier is hybrid application consisting of
built-in components that enable P2P messaging for
distributed computing applications.

The easiest way to envision msgCourier is to think of
it as a cross between a messaging queuing server, web
server, and application server.

The msgCourier is being developed as an open
source project which isn’t only intended to support next
generation volunteer computing but also a host of other
potential applications. In the figure 6, each server box
with connecting lines will run a msgCourier server.

6.2 msgCourier Technical Overview

A primary goal on msgCourier is to eliminate external
run-time dependencies. We chose to build msgCourier
using the C++ programming language with initial
support for GNU/Linux and MS Windows. We
leverage a number of free and open source components
to create a robust server application.

In support of C++ we use the Boost programming
library. We added scripting support to msgCourier by
embedding the Tcl language interpreter. We use

Maciej Sobczak's open source C++/Tcl library
interoperability between C++ and Tcl. For our
database needs we’ve embedded the SQLite SQL
engine into msgCourier.

We’re securing msgCourier communication using the
Crypto++ library. For our network monitoring we’re
using the GraphViz graph visualization software.

Boost 1.32 C++ Library
Crypto++ - 5.2.1

Cryptographic methods

msgCourier Open Source Building Blocks

Tcl 8.4.9
Tool Control Language

CppTcl
C++ to Tcl binding framework

SQLite 3.0 Embedded SQL
engine

GraphViz 1.1.1
Graph visualization

Figure 7. msgCourier Software Building Blocks

When using these components msgCourier is under
two megabytes in size under MS Windows and about
three megabytes under Linux. The cost of using these
libraries really amounts to a more complex build
process, but eliminates runtime dependencies.

We built msgCourier as a multithreaded application
with support for both TCP and UDP based messaging.

Messages inside of msgCourier are handled by
loadable components called message handlers. The
msgCourier server can be configured to route messages
to specific handlers on a local machine or another
remote server. Figure 8 shows a list of components
present in the current msgCourier application. The
Crypto usage box on the bottom right is only currently
partially implemented.

The msgCourier server has a built-in multi-threaded
multiple connection web server component.
Application developers can leverage the built-in web
server to create their own custom configuration and
monitor pages or web based services.

The use of HTTP and XML over TCP is optional.
However, msgCourier has internal support for HTTP
and XML because of their widespread ubiquity and
ability to flow through firewall and proxy servers.

msgCourier Main Components

Multithreaded design ScriptEngine

Multiple TCP/UDP Servers Msg Routing rules engine

Embedded Web Server
Presence Manager / Service

Manager

System Metrics
Rule based connection blocking,

filtering, forwarding

Plug-in Manager

Local database usage via built-in
SQLite engine

XML script to Tcl transform

Crypto++ usage
Digital Certificates, msg

encryption, cryptographic hashes

Figure 8. msgCourier Components

Some of our design choices were:

• No dependency on external software such as
MySQL, Apache or external scripting languages.
Although, project developers are free to embrace
the technologies of their choosing.

• Self-contained. Uses embedded SQLite database
engine and built-in Tcl interpreter.

• Configurable via a web based interface. Similar to
Internet appliances.

• Based on a messaging paradigm similar to Jabber.
• Supports low-level communication via UDP for

use within clusters.

• Uses its own optimized messaging format, but
supports HTTP over TCP. XML is optional.

• Built-in (optional) XML to Tcl transform engine.
• Built-in web application server.
• Built-in message routing. Complex routing rules

can use regular expression.
• Servers communicate with one another using P2P

concepts.
• Plug-in component architecture allows developers

to extend and customize msgCourier for their own
specific needs.

6.3 msgCourier Project status

msgCourier is currently undergoing its first public
testing. The framework for many of the features we’ve
described is already in place and quickly evolving.

7. Emerging trends

We see the volunteer computing landscape evolving in
sophistication to meet emerging project needs. A
client-server centric view will become increasingly less
common as P2P based solutions become the norm.
Grid practitioners are already realizing that volunteer
computing makes sense for certain aspects of their
work. In addition they’re discovering that the
economic benefits of leveraging volunteer computing
are well worth investigating.

Consider the frequency of which in-house clusters
can be upgraded. Compare that to the upgrade patterns
and increasing growth and availability of Internet
connected machines in the possession of the general
public. The exponential growth of the public
computing sector is becoming difficult to ignore.

7.1 Embracing Clusters

Clusters exist throughout the world. Increasingly,
clusters are being built and hosted in the homes of
computer enthusiasts. Volunteer computing projects
which specifically target clusters have an opportunity to
benefit from the computing potential inherent in tightly
coupled networked systems.

In this approach a node on a local cluster is
designated as receiving batches of work units and or
instructions for generating local work units from a
project server. This local master node is then
responsible for distributing work to local nodes
whereby leveraging the benefits of local high speed
intercommunication. Completed work units are then
collected by the master node and sent back to the
project server. This approach eliminates the need for
each node in a cluster to individually communicate with
a central project server. Thus, this solution makes
effective use of the cluster.

7.2 Extending Grids

An increasing trend has become to explore how
volunteer computing can allow Grid systems to freely
tap the resources available in modern computing
households.

It’s important to realize that Grid systems while
amazingly flexible are still relatively finite in capacity.
In contrast, the availability of volunteer computing

resources increases based on public interests. A
volunteer computing project that captures the
imagination and interest of the general public can scale
to an impressive amount of computing power in a
matter of days.

We believe that Grid practitioners will find it
increasingly compelling to explore extending their Grid
facilities using volunteered computing resources.

7.3 P2P Clusters

In the earlier days of Internet distributed computation
efforts, researchers realized that the Internet was
quickly expanding and making it feasible to leverage
remote resources. Today the following factors are
helping to change our view of how future projects
might be structured.

• Network speeds are increasing.

• The sophistication and interests of computer
enthusiasts is expanding. Many are networking
machines and exploring volunteer computing
projects.

• The number of Internet connected machines
continues to grow at impressive increments.

• Commodity hardware continues to increase in
speed and storage capacities.

We’re seeing that the sophistication of current
computer enthusiasts has reached a point where it has
become feasible to consider them in the role of remote
cluster operators. The goal here is to distribute the
bandwidth and processing loads to remote hubs. In
addition, other benefits such as fault tolerance may be
realized.

Volunteer computing software which is capable of
P2P capabilities such as self organization will become
increasingly common.

The vision we share with other practitioners is one of
a P2P network of hubs which magnify the network
potential of volunteer computing.

8. Conclusion

In this paper we’ve explored the field of volunteer
computing. Along the way we’ve identified the vital
role that the open source community is playing.

In conclusion we’ve shared our own recent
developments and concluded with a look at emerging
trends.

We invite you to explore this exciting field, which is
still in its very early stages of development.

9. References

[1] C. Justiniano 2004. Tapping the Matrix.
O’Reilly OpenP2P.
http://www.chessbrain.net/documentation.html

[2] D.P. Anderson. Public Computing: Reconnecting
People to Science, Nov. 2003.
http://boinc.berkeley.edu/papers.php

[3] GIMPS: The Great Internet Mersenne Prime Search
http://www.mersenne.org/

[4] C. Justiniano & C.M. Frayn 2003. ICGA Journal.
The ChessBrain Project: A Global Effort To Build The
World’s Largest Chess Supercomputer.
http://www.chessbrain.net/documentation.html

[5] Oram, A. (ed.) 1998. Peer-to-Peer: Harnessing the
Benefits of a Disruptive Technology. O’Reilly &
Associates, Inc.

[6] WxWidgets: an open source, cross-platform native
UI framework
http://www.wxwindows.org/

[7] Jabber Software Foundation
http://www.jabber.org/

[8] XMPP: Extensible Messaging and Presence
Protocol
http://www.xmpp.org/

[9] GPU: a Global Processing Unit
http://sourceforge.net/projects/gpu

[10] Berkeley Open Infrastructure for Network
Computing (BOINC).
http://boinc.berkeley.edu/

[11] C.M Frayn & C. Justiniano 2004, International
Conference on Scientific & Engineering Computation
(Proceedings), The ChessBrain Project – Massively
Distributed Inhomogeneous Speed-Critical
Computation.
http://www.chessbrain.net/documentation.html

[12] Barabasi A. Laszlo 2002. Linked: The New
Science of Networks

