Availability and Consistency Tradeoffs in the Echo
Distributed File System™

Andy Hisgen, Andrew Birrell, Timothy Mann,
Michael Schroeder, and Garret Swart
DEC Systems Research Center

July 1, 1989

Abstract

Workstations typically depend on remote servers accessed over a
network for such services as mail, printing, storing files, booting, and
time. The availability of these remote services has a major impact on
the usability of the workstation. Availability can be increased by repli-
cating the servers. In the Echo distributed file system at DEC SRC,
two different replication techniques are employed, one at the upper
levels of our hierarchical name space, the name service, and another
at the lower levels of the name space, the file volume service. The two
replication techniques provide different guarantees of consistency be-
tween their replicas and, therefore, different levels of availability. Echo
also caches data from the name service and file volume service in client
machines (e.g., workstations), with the cache for each service having
its own cache consistency guarantee that mimics the guarantee on the
consistency of the replicas for that service. The replication and caching
consistency guarantees provided by each service are appropriate for its
intended use.

Introduction

Echo is a new distributed file system being designed and built at DEC SRC,
with the primary goals of exploring issues of scaling, availability, and perfor-
mance. Echo provides a global, hierarchical name space, for scaling and for
uniformity of access. Replication is employed for availability. Performance

*Copyright 1989 IEEE. Reprinted with permission from Proceedings of the Second
Workshop on Workstation Operating Systems, Pacific Grove, California, Sept. 27-29,
1989, IEEE Computer Society Press, pages 49-54.



is achieved by distributed caching on clients, and by using a log on the file
server to reduce disk seeks {3].

Our goal for availability is to tolerate a single failure of a server and
keep providing service. Our failure model is that servers are fail-stop, but
clients can be Byzantine [6]. With Echo, Byzantine clients can cause denial
of service by generating load, but cannot cause corruption of data or of other
clients. These assumptions seem reasonable for a workstation environment,
where server machines can be placed in computer rooms but workstations
will often be less physically secure. We assume that the network can parti-
tion and can lose or delay messages.

In this paper, we concentrate on the issue of tradeoffs between consis-
tency of replication and caching versus availability. The file volume service
is more consistent but less available, and the number of replicas that it is
suited to is relatively small, in the range of, say, one to four. The global
name service is less consistent but more available, and the number of repli-
cas that it can accommodate is relatively larger, say, up to several dozen. A
survey of approaches to the problem of providing service while partitioned
and coping with inconsistencies may be found in [2].

Organization of the Echo Hierarchical Name Space

The Echo hierarchical name space is implemented in two pieces. The upper
levels of the hierarchy are implemented by SRC’s global name service [8, 1].
The lower levels of the hierarchy are implemented by Echo’s logical file
volume service. For example, consider a full path name:
/com/dec/research/src/users/hisgen/echo/wwos/paper.tex
A prefix of this name, say:
/com/dec/research/src/users/hisgen
is interpreted by the global name service. It produces an Echo mount point,
which contains a (low-level) unique identifier for an Echo file service volume
along with the name of the service that implements that volume. That
service is accessed via remote procedure call, and the volume identifier plus
the remainder of the path name are passed along to it to be interpreted.

File Volume Service Replication and Caching

Each logical file volume is implemented by a set of server CPUs and disks.
The disks can be replicated and/or the server CPUs can be replicated. The
components are organized in a Primary-Secondaries scheme. The Primary




server CPU is chosen arbitrarily, and it then uses majority voting to deter-
mine the most up-to-date disk. In configurations with an even number of
disks, witnesses are used to break ties [10].

All client reads and updates are sent to the Primary. The Primary trans-
lates file system updates into disk block writes, and sends the writes to all
disks that are up and in communication. The responsibility for replication
rests with the service, and not with the clients, in keeping with our assump-
tion that clients may be Byzantine.

In general, upon any failure of a server disk or server CPU, or of the
communication medium between server disks and server CPUs, a new elec-
tion is held. Relatively good communication is required between the CPUs
and disks that make up a single replicated service, with low latency and
high bandwidth.

Our replication scheme provides a strong consistency guarantee. In-
consistencies due to partitions are ruled out by requiring a majority. By
requiring all reads and updates to go through the Primary, we ensure that
two clients cannot see different data, including the case of data that is in
the middle of being updated. The drawback is that a majority of disks and
their CPUs must be up and in communication.

Clients cache data from the file volume service. Cache consistency is
achieved by having the service keep track of which clients have cached which
files and directories: the Primary calls back on clients at the start of an
update to a file or directory, telling them to discard that file or directory
from their caches. The algorithm is similar to those of the Andrew and
Sprite file systems [4, 5, 9]. The data base of which clients have which files
and directories is replicated: a copy is maintained both on the Primary and
on each Secondary. The file service cache consistency algorithm achieves the
same strong consistency guarantee as the file service replication, that two
clients cannot simultaneously see different data.

We believe that the strong consistency guarantee is important at the
lower levels of the Echo hierarchical name space. First, this is where most
user data will live, and the strong guarantee is less confusing to average users
than a weaker guarantee would be. Second, many application programs that
run in distributed computing environments were originally designed to run
on single time-sharing systems where strong consistency was easily achieved
and was simply taken for granted by most application programmers. Pro-
viding these programs with the semantics to which they are accustomed is
easier than trying to relax the semantics and discovering by painful experi-
ence which programs no longer work.




A good example of an application program that relies on strong consis-
tency semantics is the Unix make utility, which uses the existence or non-
existence of files and the last-write time-stamps on files to make its decisions.
At SRC, we run our own parallel version of make, which takes advantage of
idle machines in our local network of workstations [11].

Global Name Service Replication and Caching

SRC’s global name service also employs replication for availability. Its guar-
antee for the consistency of its replicas is looser than that of the file volume
service, but it provides greater availability.

With the global name service, updates propagate nonatomically to all
replicas. The replicas eventually converge to the same value, but clients are
permitted to observe intermediate states, that is, to obtain different answers
to the same query from different replicas.

The global name service provides service even while the replicas are
partitioned. Only one replica needs to be available for service to be provided,
not a majority. Clients can obtain service from any replica; there is no
notion of a primary. When a partition is reconnected, conflicting updates
are resolved using timestamps: the most recent update wins.

Because the update rate is low, because the objects being updated are
small (directories rather than files), and because of the way it accommodates
partitions, the global name service replication scheme is better suited to
geographic distribution on communication links with high latency and low
bandwidth. Because of these same properties, having a larger number of
replicas is feasible.

Clients cache data from the global name service, read-only. The cache
consistency is weak; cache invalidation is triggered by expiration times, of
say, several hours. Observe that obtaining data from an out-of-date cache
is comparable to obtaining data from a name service replica that is not in
communication with the other replicas.

The client cache can provide even better availability if it is always kept
loaded with data that is important to this client, as determined by a com-
bination of past history and administrative scripts, and if it times out old
entries only when the client is able to communicate with a name service
replica and obtain more recent data. We call these ideas stashing: they dif-
fer from caching in their fetch and replacement policies and in having even
looser comnsistency.

We believe that the looser consistency guarantee of the global name ser-



vice will be acceptable for the upper levels of the Echo hierarchical name
space. First, much of the information at the upper levels may be structured
as hints [7]. For example, consider the mount point data, which consists
of the low-level unique identifier for a volume plus the name of the service
that stores it. When that service is contacted, if it no longer stores that
volume, it will know it. Second, much of the data at the upper levels can-
not be modified by ordinary users; its access control permits updates only
by system administrators. A small number of special application programs
could be written for making updates at the upper levels that would help
administrators cope with inconsistency; the number of such special applica-
tion programs will be much smaller than the number of general application
programs. Third, the update rate at the upper levels is relatively small.
With Echo as a whole, administrators can trade off the consistency and
availability of a particular directory in the hierarchical name space by decid-
ing what service to store it in: the file volume service or the name service.

Status

Our design of Echo is almost complete, and interfaces between major com-
ponents have been written. We plan to have a prototype implementation
working in the summer of 1989.

References

(1] Andrew D. Birrell, Michael B. Jones, and Edward P. Wobber. A sim-
ple and efficient implementation for small databases. In Proc. 11th
Symp. on Operating Systems Principles, pages 149-154. ACM SIGOPS,
November 1987.

[2] Susan B. Davidson, Hector Garcia-Molina, and Dale Skeen. Consis-
tency in partitioned networks. ACM Computing Surveys, 17(3):341-
370, September 1985.

[3] Robert Hagmann. Reimplementing the Cedar file system using log-
ging and group commit. In Proc. 11th Symp. on Operating Systems
Principles, pages 155-162. ACM SIGOPS, November 1987.

(4] John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols,
M. Satyanarayanan, Robert N. Sidebotham, and Michael J. West. Scale



and performance in a distributed file system. ACM Transactions on
Computer Systems, 6(1):51-81, February 1988.

Michael L. Kazar. Synchronization and caching issues in the Andrew
file system. In Winter Conference Proceedings, pages 27-36. USENIX
Association, February 1988.

Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine
generals problem. ACM Transactions on Computer Systems, 4(3):382-
401, July 1982.

Butler W. Lampson. Hints for computer system design. IEEE Software,
1(1):11-28, January 1984.

Butler W. Lampson. Designing a global name service. In Proc.
5th Symp. on Principles of Distributed Computing, pages 1-10. ACM
SIGACT-SIGOPS, August 1986.

Michael N. Nelson, Brent B. Welch, and John K. Ousterhout. Caching
in the sprite network file system. ACM Transactions on Computer
Systems, 6(1):134-154, February 1988.

Jehan-Francois Paris. Voting with witnesses: A consistency scheme for
replicated files. In Proc. 6th International Conference on Distributed
Computer Systems, pages 606-612. IEEE Computer Society, 1986.

Eric Roberts and John Ellis. parmake and dp: Experience with a dis-
tributed, parallel implementation of make. In Proceedings from the
Second Workshop on Large-Grained Parallelism. Software Engineer-
ing Institute, Carnegie-Mellon University, Report CMU/SEI-87-SR-5,
November 1987.



