
Presented at the 2005 BoF LinuxForum in Copenhagen October 8th 2005

Early experiences with clusters and compute farms in ChessBrain II

Kevin Lew (rawr@inorbit.com)
Carlos Justiniano (cjus@chessbrain.net)

Colin M. Frayn (C.M.Frayn@cs.bham.ac.uk)

Abstract

 Next generation volunteer-based distributed
computing projects are working to embrace a wide
range of distributed computing environments. In this
paper we report on our early experiences with the
ChessBrain II project, an established collaboration
between researchers in a number of countries,
investigating the feasibility of inhomogeneous speed-
critical distributed computation.

1. Volunteer-based distributed computing

The term “Volunteer Computing” has emerged to
describe distributed computing projects where
volunteers from the general public supply the necessary
computing resources.

Popular projects have successfully utilized thousands
of distributed computers to tackle a vast range of highly
complex, but separable problems. One such project is
ChessBrain, a worldwide distributed network of
machines that plays the game of chess.

2. ChessBrain and ChessBrain II

The ChessBrain project was formed in 2001 to study
distributed computing and speed-critical computation
using publicly volunteered resources. The game of
chess was chosen because of the parallelizable nature of
chess game tree analysis and because of the author’s
interests in the subject.

ChessBrain played its first game of chess using
distributed machines in December 2002. On January
30th 2004, ChessBrain played a live game against top
Danish Chess Grandmaster, Peter Heine Nielsen using
2070 machines from over 50 different countries. It was
the first time in computing history that a distributed
network of machines played a game against a top
human opponent under tournament conditions. The
game resulted in a draw after 34 moves and ChessBrain
was awarded a 2005 Guinness World Record under the
Internet section of the Science and Technology
division.

ChessBrain is unique among volunteer computing

projects because it requires real-time support from
distributed machines. We are not aware of any other
volunteer computing project which requires real-time
feedback. The standard response timeframe is usually
measured in days or weeks rather than seconds and
minutes. The extra complexity required in order to
synchronize and optimize the computational resources
in order to cope with this time-criticality make
distributed chess a fascinating area worthy of
considerable study.

ChessBrain’s real-time requirement has driven many

of the architectural decisions that were made
throughout the project’s four year history. Many
problems were encountered during the 2004 exhibition
game against Grandmaster Nielsen. The ChessBrain
team has embarked on a significant rewrite of the
underlying framework in support of a faster, more
robust and scalable approach.

The original ChessBrain system consisted of a central

SuperNode server hosted at distributedchess.net.
Thousands of PeerNode clients connected directly to
the SuperNode to retrieve work units and to return them
in real-time.

A single high-powered server is typically adequate

for a small project. However, once ChessBrain grew to
thousands of contributors a larger more scalable
solution was required.

To address issues of both performance and

scalability, a new design was chosen, consisting of
clusters of SuperNodes. In this hierarchical model,
each SuperNode maintains its own community of
PeerNodes which communicate directly with it, and not
with the central ChessBrain server.

This approach offers a number of tangible benefits:

• Internet latency is reduced for machines clustered
around a SuperNode hub. In many cases these
machines are located in the same building or at the
very least in the same geographical region.

• Bandwidth requirements are greatly reduced as the
bandwidth load is distributed among participating
SuperNodes.

• Communication efficiencies are realized when
machines exists within a local LAN environment
and within clustered environments such as Beowulf
clusters and compute farms – the so called
Network of Workstations (NOW) and Pile of PCs
(POP) arrangements.

During the past few years, we have received offers from
computing centers which feature high speed clusters to
host ChessBrain software. However, the first
ChessBrain was not designed specifically for clusters so
there has been very little compelling reason to commit a
cluster to the project. During our demonstration match
at Copenhagen in 2004, we were able to use the 200
node BioCluster located in Copenhagen, but due to the
nature of the communications bottlenecks, we were
unable to take proper advantage of the computing
power it provided. We are addressing this limitation
with ChessBrain II, which is specifically designed to
harness distributed clusters. In so doing, we hope to
localize messaging interaction between a SuperNode
and its associated compute nodes whenever possible.

There is another significant benefit which is beyond

the scope of this paper, which we’ll touch on briefly.
We believe that computer enthusiasts would find it
entertaining to operate their own virtual
supercomputers. Specialized software that easily
allows enthusiasts to cluster both local and distributed
machines would appeal to an Internet subculture of
enthusiasts who refer to themselves as DC’ers
(Distributed Computing practitioners). Because many
DC groups contain hundreds of members (and many
operate more than one machine), the social aspect of
such an arrangement should not be overlooked.

3. msgCourier

A message is a fundamental unit of information
exchange between distributed resources. All volunteer
computing projects share the concept of message
passing.

On ChessBrain II, it became clear that a more robust
messaging infrastructure was required. Over a year
ago, we began work on msgCourier - an open source
custom server for use in P2P and non-P2P distributed
computing projects. MsgCourier is designed to support
distributed computing efforts where some combination
of the following constraints are present:

• When it is undesirable to host multiple server

applications, such as a web server, message

queuing server, database server, and or an
application server.

• When a server solution must support built-in
security features which are comparable to but
without requiring the use of SSL or SSH.

• When the server application must provide built-in
Peer-to-Peer functionality such as, resource and
service discovery, self-organization, and clustering.

• When the end-user isn't knowledgeable enough in
the use or configuration of the applications listed in
this section.

• When there is a need for a light-weight, high-speed
server application base for use within embedded,
resource constrained, and or low-cost hardware
platforms.

• When the experience base of the application
developer is limited with regard to network
programming and thus a simple framework is
required to build larger more complex applications.

• When ease of deployment and near-zero
configurations are critically important.

• When the size of a completed application, which
includes at least some of the functionality listed
above, is important.

• When a desired solution must run under Microsoft
Windows and GNU/Linux environments and must
be portable to other platforms.

• When a non-propriety solution with source code
availability is essential to ensuring maximum
flexibility.

Development on msgCourier is being driven by the

ChessBrain II project but we believe it will be of
generalized use outside of ChessBrain. For example,
we believe that the following applications are possible:

• Web servers, File servers, Proxy servers, Gateway

servers, Load Balancing servers, Message/Content
routers.

• P2P applications for resource sharing such as
computation sharing, file sharing and storage.

• Game servers and chat servers that complement
existing web based applications.

• Messaging Servers for Instant Messaging.
• Batch job processing systems
• Distributed computing solutions involving clusters.
• Solutions which wouldn't necessarily require the

features of a Beowulf cluster or Grid solution, but
do require a way to distributed work load.

• A queue/dispatch/director for work within an
organized or ad-hoc compute farm.

It is important that we point out msgCourier is not
intended to be a replacement for specialized web and
messaging servers. Rather, msgCourier is intended as a

potential stand-in component when the use of such
systems is not feasible.

While considering our needs for ChessBrain II, we
researched a number of potential solutions including the
Berkeley Open Infrastructure for Network Computing
(BOINC), but have concluded that ChessBrain’s unique
requirements necessitate the construction of a new
underlying server technology.

The single most important reason why we’ve arrived
at this conclusion is because our plans for ChessBrain II
promote our end users to cluster operators. We believe
that our user base consists of knowledgeable computer
enthusiasts. However, two important factors limit the
extent of their support:

• Many are computer savvy but are not networking
specialists.

• Many don’t have the time to invest in acquiring
and configuring difficult to support and
administer applications such as web, database
servers and messaging servers.

The primary task for ChessBrain II is to minimize the
complexity of clustering local and remote machines for
our community of supporters. Our msgCourier server
platform is intended to support many of our core needs.

4. Beowulf clusters and compute farms

With msgCourier, ChessBrain is able to communicate

among a wide range of computing environments. In
order to explore each environment we assembled a
Beowulf cluster and compute farm, and have explored
extending msgCourier with support for each unique
environment.

4.1. Early Beowulf experimentation

Beowulf clusters are highly scalable clusters of
commodity workstations running an open source
software infrastructure.

We built a small Beowulf cluster consisting of three
nodes and later expanded it to eight nodes. Owing to its
unattractive appearance we affectionately refer to the
cluster as the “Warthog.”

Figure 1. The “Warthog” cluster.

The three leftmost machines are the original nodes.
Today, they currently serve as an NFS server,
performance monitor and master node respectively. On
the right are the eight new nodes. Each node is a basic
machine, with the following hardware configuration:

• Motherboard:
PCChips M863PRO3400A+ with a 333 MHz FSB.

• Processor:
One Athlon XP-M 2600+ running at 1.8 GHz,
soldered straight onto the motherboard.

• RAM:
One 512 MB PC3200 400MHz DDR.

• Disk:
One Samsung 40GB PATA drive @ 7200 RPM
with 2MB cache.

• Connectivity:
10/100 Mbps integrated (onboard) Ethernet.

The following diagram illustrates the overall network
connectivity:

DSL modem

suse00
(NFS server)

To the Internet

...
100BaseT 16-port

Ethernet switch

(slaves)

suse09
(perf. mon.)

warthog (master)

suse01 .. suse08

Figure 2. “Warthog” cluster connectivity.

Each node connects directly into a 16-port 10/100
Mbps switch. The switch supports the isolated subnet
that is typical of Beowulf environments. In addition, the
master node has a secondary Ethernet card connecting it
directly to the outside world via a DSL modem. The
master is also different in that it features a Pentium 4
processor running at 2.4 GHz and 2 x 512GB DDR
memory. The NFS server is a dual-processor Pentium 3
with SCSI disks.

Much of the knowledge on how to build generic

Beowulf clusters can be found in a variety of sources.
We relied primarily on [Swendson 2004], with the
following distinguishing features/differences:

1. We opted for SUSE Linux [OpenSUSE 2005]. At
the time of writing, the Warthog runs SUSE Linux
release 9.3. Our choice was influenced by previous
experience with the distribution. This proved to be
a good decision in light of the fact that OpenSUSE
Linux installed smoothly and commissioning the
nodes proved to be straightforward.

2. MPICH [MPI 2005] is the message passing API we
chose for experimentation.

3. The master node doesn’t run a firewall; however
the DSL modem has an embedded firewall. The
modem only has one port opened—the one through
which ChessBrain interaction occurs with the
outside world.

4. Our NFS server is not the master node. The
rationale behind this is to restrict the NFS server’s
responsibilities.

5. Our slaves run a full OpenSUSE distribution with
all the default packages; not just the network
service package.

6. We use GRUB as boot loader, and we have it
MBR-resident.

7. The NFS server boots first. Then the other nodes
do so. When they do, they mount /mnt/beouser/
from the NFS server. beouser is the unix username
under which we ran the MPI tests. The path
/mnt/beouser/ is just a directory on the NFS server
that holds executable files needed by the slaves.
Every slave mounts /mnt/beouser upon startup.

4.2. Beowulf test application

The ChessBrain engine is fundamentally a sophisticated
search engine. Intrinsically therefore, it is compute-
intensive and we sought to implement a test-bed that
would give us insight into the Beowulf’s compute-
intensive capabilities.

To that effect, we implemented a distributed prime-
number search MPI program that uses brute force to
determine primality. We plan to implement the same

algorithm using msgCourier, and learn from the
comparative outcome.

Our goal is not to make a case for choosing between

an MPI and msgCourier. We are interested in both the
issues and the implications of choosing a particular
approach based on ChessBrain’s needs.

The MPI implementation runs with a master node

and a minimum of 1 slave. We experimented with up to
8 slaves. The testing proceeded as follows, using the
simple test application of finding all prime numbers
within a given range {1 … X}:

1. The master starts by finding out how many slaves
are in the node pool.

2. The master apportions the integers by sending each
slave a range delimited by a pair of integers,
specifying the lower and upper bounds. For
example if X = 84000 and there is 1 slave then that
slave receives the pair (1, 84000). With X =
504000 and 2 slaves, the pairs are (1, 252000) and
(252001, 504000).

3. Once the work is apportioned, the master waits to
receive results from any slave.

4. Upon receiving their work unit from the master,
each slave loops through its range and, for each
odd number in the range, it uses brute force to find
out if that number has factors other than 1 and
itself. If it doesn’t, then it is a prime.

5. As each slave loops through its range, it stores
every prime number it finds in an array. Upon
completing its work unit, the slave makes an
MPI_Send call to report back its results.

6. The master receives arrays of prime numbers from
all the slaves and collects them all in an array and
eventually prints them out.

We used X = 84000, 168000, 252000, 336000,
420000 and 504000, and we harnessed anywhere from
1 to 8 slaves, distributing the larger integer ranges first,
to allow their slaves to start first. Raw results in
seconds are tabled below:

Number of slaves

X 1 2 3 4 5 6 7 8
84000 5 4 3 2 1 1 1 1

168000 18 13 10 7 6 5 5 4
252000 38 28 20 17 14 11 10 8
336000 67 49 36 29 23 19 18 16
420000 101 75 55 43 36 30 26 23
504000 144 106 78 61 51 43 37 32

Figure 3. Raw performance results.

The chart below illustrates the timing results
obtained. The six lines correspond to the different
values of X used. The Y-axis represents the time taken

to complete the search and the X-axis represents the
number of slaves involved.

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8
Number of slaves

tim
e

(s
)

1 .. 84000 1 .. 168000 1 .. 252000 1 .. 336000 1 .. 420000 1 .. 504000
Figure 4. Performance chart.

The method by which work was divided up among the
slaves led to uneven loads. For example with X =
504000 and 8 slaves, the task of slave 1 is to determine
the primality of numbers 1 .. 63000 whilst slave 8 has
to reckon with the range 63001 .. 504000. Slave 1 is
bound to finish faster because the task of determining
primality, at least in this naïve algorithm, is related to
the size of the number to be tested. We did observe
such an imbalance in the tests, noting that real-life
frequently distributes uneven loads to nodes. Even in
the first ChessBrain experiment, different compute
nodes searched trees of varying depths.

Given this caveat, we examined scenarios where
some of the larger integers were distributed to all
slaves. For example, with X = 504000, we
experimented with 80 MPI processes on 8 slaves,
dividing the integers into 80 ranges. Again we
distributed the larger integer ranges first, thereby
allowing those processes to start first. We observed that
the time taken for the Warthog to complete 1 .. 504000
dropped to 19 seconds.

The time taken for one slave to determine the

primality of integers 1 .. 504000 was 144 seconds
whereas, with 80 MPI processes on eight slaves, the
time taken was 19 seconds. Theoretically therefore,
were we to serialize the eight slaves, the task would
take 152 seconds. This prompts us to posit that the
Warthog loses some 5.6% compute efficiency which we
attribute to MPI communication overhead. Those
figures are heartening and we recognize that the

compute-intensive and easily-parallelizable nature of
primality determination meant that our tests leant
themselves to good results. ChessBrain displays similar
properties and we anticipate great gain from cluster-
based parallelization.

An area msgCourier differs from our prime number

search, primarily in the data type transmission between
master and slaves. MPI requires the use of
predetermined data types, while msgCourier isn’t
concerned with that level of detail.

In our tests, master and slaves exchanged arrays of

integers. We used 32-bit integers and we are keenly
aware that this is a good fit for the 32-bit architecture of
our processors. To gain insight in the impact of this, we
re-implemented and ran our test using 64-bit integers so
that MPI_Send and MPI_Recv had to do extra work.
Indeed we observed that whilst 8 processes on 8 slaves
took 32 seconds to search 1 .. 504000, the same task
now took 53 seconds when 64-bit integers were used.

4.3. msgCourier

msgCourier is currently designed to leverage compute
farms which are not necessarily configured as a
Beowulf cluster. In this scenario, msgCourier is
responsible for message passing in place of MPI.

We’re currently exploring the potential of modifying
msgCourier to leverage MPI when it is available on the
target cluster.

5. Conclusion

This paper examines our early exploration into
extending ChessBrain II to leverage the use of clusters.
In particular we’re beginning to explore Beowulf
clusters and MPI for potential speed improvements.

Preliminary tests using prime number searches
indicate that compute-intensive and easily-
parallelizable algorithms stand to gain much from
Beowulf clusters. ChessBrain II relies on such
algorithms.

We propose the msgCourier technology as a partial
solution to the problems faced by new volunteer
computing initiatives, namely:

• Improving the effective utilization of clustered

resources within local networks.
• Simplifying the creation of custom clustering

software with minimal dependencies on the
underlying operating system platform.

• Devising an underlying framework (msgCourier)
on which to build distributed computing
solutions, such as work distribution servers,
gateways and distributed logging facilities.

We’re preparing msgCourier to harness distributed
clusters in support of volunteer computing and Grid
computing initiatives.

6. References

[Gropp et al 1999] William Gropp, Ewing Lusk and
Anthony Skjellum. Using MPI: Portable Parallel
Programming with the Message-Passing Interface. MIT
Press, 1999.

[C.M Frayn & C. Justiniano 2004] Colin M. Frayn
International Conference on Scientific & Engineering
Computation (Proceedings), The ChessBrain Project –
Massively Distributed Inhomogeneous Speed-Critical
Computation.
http://www.chessbrain.net/documentation.html

[Justiniano 2005] Carlos Justiniano. Tapping the
Matrix: Revisited.
http://www.chessbrain.net/documentation.html

[Justiniano 2003] Carlos Justiniano. ChessBrain: A
Linux-Based Distributed Computing Experiment. Linux
Journal (13), Sept 2003.

[MPI 2005] MPICH – A Portable Implementation of
MPI. http://www-unix.mcs.anl.gov/mpi/mpich/.
OpenSUSE 2005. The OpenSUSE Project.
http://www.opensuse.org.

[OpenSuSE 2005] http://www.opensuse.org

[Sterling et al 1999] Thomas Sterling , John Salmon,
Donald Becker, Daniel Savarese. How to Build a
Beowulf: A Guide to the Implementation and
Application of PC Clusters (Scientific and Engineering
Computation), MIT Press, May 1999.

[Swendson 2004] The Beowulf HOWTO.
http://www.tldp.org/HOWTO/Beowulf-HOWTO/.
2004-05-17.

http://www.tldp.org/HOWTO/Beowulf-HOWTO/

