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Introduction
Spatial variability is a very impor-
tant quality of air pollutants for
many areas of EPA policy. Obviously,
monitoring regulations and network
design depend heavily on knowl-
edge of spatial variability, as do
implementation strategies and poli-
cies. Control strategies also depend
heavily on this knowledge, which
helps state and local agencies decide
whether a local or regional program
may be more effective. Action day
programs and public information
programs also depend on this infor-
mation to facilitate decisions regard-
ing how large of an area should be
included in various alerts or infor-
mation publications. Traditionally,
spatial variation has been depicted
by isopleth maps, concentration
maps, and box plots of various sites.
Each of these methods gives a crude
idea of spatial variability. This paper
explores a new way to visualize
large-scale spatial variability and
also presents an extension of this
method in an attempt to characterize
spatial variability in a useful way.
The new methodology is presented
along with its application using data
from several pollutants nationwide.

Characterizing 
Spatial Variation 
One of the first questions arising
from almost any investigation of an
air pollutant is, “What is the spatial
and temporal variability or varia-
tion?” Very often, the spatial part of
the question is answered with a map
showing ranges of pollutant levels

Figure 1. PM10 annual averages (county maximum).
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Abstract
Spatial variability is an important quality of air 
pollutants for many areas of policy within the U.S.
Environmental Protection Agency (EPA). Obviously,
monitoring regulations depend heavily on knowledge 
of spatial variability. In addition, control strategies
depend on this knowledge, which helps determine
whether a local or regional program would be more
effective. Action day programs and public information
programs also benefit from this knowledge.

Traditionally, spatial variation has been depicted by
isopleth maps, concentration maps, and box plots of
various sites. Does this really give us useful knowledge
about spatial variation? This paper explores a new way
to examine spatial variability on a national scale and
also presents an extension of this method in an attempt
to characterize spatial variability in a useful way. The
new methodology is presented along with its applica-
tion using PM2.5 and ozone data.

by county. These maps show where
pollutant levels are higher and lower
and, in general, where information is
available or where monitoring sites
are located (see Figure 1).

After the work of producing the
map is done, the question is usually
considered answered. However, this
is a crude view of spatial variability.
Looking at such a map, counties with
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data are a series of measurements
representing differences between two
locations paired by time. Thus if di is
the difference between two readings
at two monitors at a given time i,
then di = x1i–x2i. If x1 and x2 are both
random variables from two locations,
then the variance of the difference is
V(x1–x2), or V(d). In fact, the vari-
ance of the difference is V(d) =
V(x1)+V(x2)– 2COV(x1,x2). This is the
sum of the variances of the two
random variables minus twice the
covariance (a measure of how much
the two random variables vary
together). Basically, this says that the
more the two random variables
change together (they go up or down
together but they do not necessarily
change the same amount), the
smaller the variance of the difference
will be because the values at two
different sites would be expected to
vary together more if they are close
together and vary more independ-
ently if they are far apart. This leads
to the concept of the variogram,
which, in this case, is the relationship
between the variance of the differ-
ences and the distance between two
sites (Figure 3). The dotted line in
Figure 3 shows how the variance
changes with the distance. At a

distance of zero (0), there is still
variation left that does not go away
even if the sites are at the same
location. This is called the nugget.
Similarly, there is a point, called the
sill, at which the variance levels out.
The area between 0 and the sill is
called the range. The range can be
thought of as the region where there
is a correlation between two sites.
The region after the sill can be
thought of as the distances at which
sites appear to be independent of
each other.

Figure 4 shows how PM2.5 data
can be used to plot the variance of
the difference against distance. The
difference in daily PM2.5 values was
calculated for various sites across the
country. The variance of the differ-
ences was calculated, and the
latitude and longitude of each site
were used to calculate the distance
between two sites. Each pair of sites
then had a variance of the difference
and a distance, which were plotted
for all possible pairs of sites across
the country.

Looking at the scatterplot, it is
clear that there is no simple relation-
ship between the variance of the dif-
ference and distance. A very dense
cluster of points seems to center over
25 at 0 distance and then slowly
increases as the distance increases.
However, from a casual examination

higher values are easily spotted but
it is hard to visualize how close
adjoining counties are to others.
Some analysts go a step farther and
show a map of an estimated surface
of pollutant levels. The latest and
most popular way to do this is called
kriging.1 Kriging is a spatial interpo-
lation technique developed for the
mining industry in South Africa to
predict ore reserves. With an interpo-
lated surface, all the blank areas on
the map are gone, and it is some-
what easier to see how pollutants
may vary over space. Figure 2
provides an example of a kriged
surface. Because the surface itself is
smoothed by the process, kriging
actually hides some of the spatial
variation, which may or may not be
a good result depending on the
purpose of the analysis.

At the heart of kriging is a con-
cept called a variogram, which is a
representation of the statistical vari-
ance of the difference between two
data points on a map as it relates to
the distance between the two points
on the map. Much like the mean,
which is a measure of the center 
of a distribution of data, the variance
is a measure of the spread of a 
distribution of data. In this case, the

Figure 2. Example of a kriged surface.
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Figure 3. Schematic of a variogram.
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summarized by box plots of the data
over 20-km intervals. This would
result in Figure 6, which shows a
much less confusing picture. The
whiskers represent the maxima and
minima of the intervals. The box
represents the 75th and 25th per-
centiles, the plus sign (+) represents
the mean, and the single line in the
box represents the median or 50th
percentile. Now a trend is much
more apparent in the correlation than
in the scatterplot. However, this

display shows only how well the
data “track” or follow a pattern. It
does not show how well the data
from different sites actually agree. In
other words, the data from one site
might track the data from another
site very well but still have very
different concentrations on average
than data from the other site. Here
we present a solution to this prob-
lem, a coefficient of perfect agree-
ment, or CPA.

of the plot, enough points fall outside
the dense cloud (in fact, many were
cut off to actually see any trend at all
by setting the maximum variance
displayed to 500) to bring into ques-
tion the assumption used in kriging,
as shown in Figure 3, that the vari-
ance of the difference over distance
can be described by a line.

The point of defining all these
terms is to show that the variance of
the differences between two measure-
ments taken at the same time but at
different locations is generally
increasing because the covariance is
decreasing over the distance. Because
the correlation is covariance normal-
ized by the variances, we can charac-
terize the spatial dependence of data
from two locations through the corre-
lation. Because the variance of the
difference generally increased, the
covariance and, therefore, the correla-
tion should decrease over distance.
This raises the question, how does the
correlation vary over distance? To
answer this question, PM2.5 data were
used to calculate the correlation of
daily PM2.5 values between two sites,
and the latitude and longitude were
used to calculate the distance between
two sites. Thus for each pair of sites,
we have correlation and a distance.
Looking at all the possible pairs of
sites, scatterplots may be generated,
such as the one in Figure 5. The values
of the correlations are restricted to all
values between -1 and 1, but the vari-
ance of the distance must be positive.
These restrictions help provide a
much more coherent picture. There 
is, again, a dense cloud that trends
downward as the distance increases.
Also, there are many points not in the
dense cloud that fall beneath the
trend. Again, these points are numer-
ous enough to question the simplicity
of the variogram used in kriging.

To simplify what is seen in this
scatter plot, the data could be 
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Figure 4. Variance of the difference vs. distance.
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Figure 5. Correlation (r) vs. distance for PM2.5.
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on the line y = x, and the CPA = 0 if
there is no systematic agreement.
One way to create this would be to
include a term in the denominator of
the correlation coefficient as shown
in Equation B.

If there were no agreement, this
term would become large and the
CPA would become small (or close to
0). If there were perfect agreement,
the term would be 0, and, because all
the points would fall on a straight
line, the rest of the equation (the
correlation coefficient) would be 1,
allowing the CPA to be 1. However,
if the two data streams fell on a
straight line that did not have a slope
of 1 and an intercept of 0, then the

The Coefficient of
Perfect Agreement
The goal of formulating a CPA is to
give a measure of agreement with
many of the characteristics of the
correlation coefficient.

The classical correlation coefficient
is a measure of how well paired
values track each other. The value 
0 (zero) means they do not track each
other at all, whereas a value of 1
means they track each other perfectly
(all the points in a scatterplot would
be on a straight line). A value of -1
also means perfect tracking, but the
scatterplot line would have a down-
ward or negative slope. The correla-
tion coefficient is defined as shown
in Equation A.

As stated earlier, the correlation
coefficient has a nice feature in that,
when the data from two sites agree
in a perfectly linear fashion, then r is
1 (or -1). However, if the data agreed
perfectly, the only line that mattered
would be a line with a slope of 1 and
an intercept of 0 (the line y = x).
Therefore, the first characteristic we
desire in a CPA is that the CPA = 1
when all points in a scatterplot fall
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Figure 6. Box plot of correlation vs. distance.
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The trend dips quickly and then falls
off gradually. If, as before, the data
are displayed as box and whisker
plots, the more pronounced trend in
Figure 8 is revealed. This gives a
national picture of the spatial varia-
tion of PM2.5. The mean CPA starts
off at around 0.6 and falls off rapidly
out to about 150 km, then falls off
gradually from there to about 0.2 at
500 km. The maximum and mini-
mum of the coefficient (the whiskers
on the box and whiskers plot) still
vary almost across all possible values
of the coefficient (perfect agreement,
or 1, to no agreement at all, or 0) at
any distance. Quantitatively, inter-
pretation of this coefficient is difficult
at best. Where it might be of most
use is in comparisons with other
pollutants.

Comparison 
of Pollutants 
Pollutants can be compared by
following the previous steps used to
produce Figure 8. The means in
Figure 8 (the pluses [+]) can be
joined by a line for several pollut-
ants. This is where the usefulness 
of a CPA can be demonstrated. A
comparison between pollutants
could be made to help guide policy.
For example, daily values of PM2.5,
daily values of PM10, hourly values
of CO (carbon monoxide), and
hourly values of ozone were used to
produce Figure 9. As can be seen
from the plot, PM2.5 has a mean CPA
that is above ozone for most of the
distances out to 500 km (at least until
450 km). This might suggest that if a
regional control strategy is being
pursued for the ozone problem in the
United States, a regional strategy
also makes sense for PM2.5. 
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Figure 7. CPA vs distance (km).

CPA would certainly not be 1 but
less than 1 because y would not
equal x everywhere. This seems to
have all the characteristics desired in
a CPA.

However, note that the ∑(x – y)2

term will get larger and larger as the
number of data points gets larger
and larger, making the CPA get
smaller and smaller. Unless there
were a situation of perfect agree-
ment, then such a CPA could be
made to be arbitrarily small by
taking larger and larger numbers of
data points to compute the CPA. A
further refinement would then be
defined as shown in Equation C.

This solves the sample size prob-
lem, but there is one problem left.
The correlation coefficient is a unit-
less or unit invariant quantity. This
CPA is not, but it should be. Units
have been reintroduced into the
formula. Because a units conversion
could result in a different CPA value,
this is not a desirable trait for a coef-
ficient. The added term is divided by
the same divisor used to normalize
the covariance to get the correlation
resulting in Equation D.

Now the CPA is unitless. 
Monte Carlo studies of the CPA

were performed by generating
values from a straight line. In linear
regression, Y = a + bX + e, where e
has a normal distribution with a
mean of 0 and a variance of σ2. This
last term is also called the variation
about the line. Five hundred sets of
values were generated with different
slopes, intercepts, and variations
about the line. Slopes ranged from 0
to 5, intercepts ranged from -10 to 10,
and the variance about the line, σ2,
ranged from 0 to 100. In this case,
whenever σ2 is 0, then r is 1 (a per-
fect linear relationship). However,
the CPA is equal to 1 only if a is 0, 
b is 1, and σ2 is 0. The studies found
the CPA to be relatively sensitive to
the lack of perfect agreement when
there was only a perfect linear rela-
tionship (when r is 1 and the CPA
should be less than 1).

Application
Using the CPA instead of r, a new
scatterplot can be constructed (Figure
7). Now the denser part of the distri-
bution of points has a different trend.
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Pollutant: CO
PM10
PM2.5
1-hr ozone
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Figure 9. Comparison of mean CPA vs distance (km).

Conclusions 
A CPA can be formulated that can be
of some use in assessing spatial vari-
ation on a national scale. The statisti-
cal properties of the CPA used here
are not known, and the CPA cannot
be used to quantify this variability.
However, it can be a useful compara-
tive tool to visualize differences in
national scale spatial variation
among pollutants.
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Figure 8. Coefficient of perfect agreement vs distance (km).


