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 3 

ABSTRACT 4 

McKitrick and Michaels (2007) tested for independence between the spatial pattern of trends in 5 

surface climate data and the spatial pattern of socioeconomic indicators that serve as proxies for 6 

measurement inhomogeneities and anthropogenic surface processes. They found the relationship 7 

to be statistically significant, and in counterfactual simulation concluded that the extraneous 8 

signals explain about half the post-1980 warming trend in surface data. This paper examines the 9 

robustness of these conclusions to treatment for possible spatial autocorrelation in the model 10 

residuals. Under a variety of weighting schemes, a robust LM test for no spatial autocorrelation is 11 

not rejected. Applying a correction for spatial autocorrelation anyway does not change the 12 

original conclusions. 13 

 14 
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 3 
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Introduction 6 

[McKitrick and Michaels (2007), MM07] observed that if adjusted surface climate data are free 7 

of biases due to inhomogeneities and anthropogenic surface processes, then the spatial pattern of 8 

gridded temperature trends should not be significantly correlated with socioeconomic variables 9 

that determine the evolution of these extraneous factors. They estimated 10 

 11 

 iiiiii WATERDSLPDRYPRESSTROP 543210 ββββββθ +++++= iABSLAT6β+  12 
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where  iθ  is the 1979-2002 trend in gridded surface climate data, iTROP  is the time trend of 15 

Microwave Sounding Unit (MSU)-derived temperatures in the lower troposphere in the same 16 

grid cell as iθ over the same time interval, iPRESS is the mean sea level air pressure in grid cell i, 17 

iDRY  is a dummy variable denoting when a grid cell is characterized by predominantly dry 18 

conditions (which is indicated by the mean dewpoint being below 0 
o
C). iDSLP  is 19 

ii PRESSDRY × , iWATER  is a dummy variable indicating the grid cell contains a major coastline, 20 

iABSLAT  denotes the absolute latitude of the grid cell, ip  is local population change from 1979 to 21 

2002, im  is per capita income change from 1979 to 2002, iy  is total Gross Domestic Product 22 



 4 

(GDP) change from 1979 to 2002, ic  is coal consumption change from 1979 to 2002, ig  is GDP 1 

density (national Gross Domestic Product per square kilometer) as of 1979, ie  is the average 2 

level of educational attainment, and ix  is the number of missing months in the observed 3 

temperature series and iu  is the regression residual. Further details, including data sources and 4 

definitions, are in [MM07].  5 

 6 

The results indicated that extraneous factors (p through x) have significant explanatory power on 7 

surface climate trends ( 14101.7 −×=P ), even after controlling for latitude, the lower troposphere 8 

temperature trends etc. After testing for and ruling out various forms of misspecification and 9 

spurious correlation they concluded that the gridded surface data are contaminated with 10 

extraneous signals. The coefficients from (1) imply that the contamination adds up to a net 11 

warming bias that can account for half the mean post-1980 global warming trend over land.  12 

 13 

While MM07 applied corrections for error clustering and heteroskasticity, subsequent criticism 14 

(R. Benestad http://www.realclimate.org/index.php/archives/2007/12/are-temperature-trends-15 

affected-by-economic-activity-ii/; R. Pielke Sr., pers. comm..) raised the possibility that spatial 16 

autocorrelation of the climate trend field might be present and if so, failure to correct it would 17 

lead to exaggerated significance.  18 

 19 

Spatial autocorrelation of the dependent variable is not a problem if the model on the right hand 20 

side explains it and leaves an uncorrelated residual. A test for residual spatial dependence can be 21 

implemented as follows. The regression model (1) can be written in matrix notation as 22 

 23 
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  u+= βXy  (2) 1 

 2 

where y is the linear trend in the temperature series for each of 440 surface grid cells, X is the 3 

matrix of climatic and socioeconomic covariates, β  is the vector of least-squares slope 4 

coefficients and u is the residual vector. Spatial autocorrelation in the residual vector can be 5 

treated using 6 

 7 

 euu += Wλ  (3) 8 

 9 

where λ  is the autocorrelation coefficient, W is a symmetric nn ×  matrix of weights that 10 

measure the influence of each location on the other, and e is a vector of homoskedastic Gaussian 11 

disturbances, [Pisati (2001)].   12 

 13 

A test of 0:0 =λH  measures whether the error term in (1) is spatially dependent. [Anselin et al. 14 

(1996)] provides a discussion of the distributional properties of common tests of 0H . Standard 15 

adaptations of Wald and Lagrange Multiplier (LM) formulae yield tests that are severely biased 16 

towards over-rejection of the null. The problem is that if the alternative model allows for possible 17 

spatial dependence of the y variables, i.e. 18 

 19 

 e++= βφ XZyy  (4), 20 

 21 
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where Z is a matrix of spatial weights for y and may not be identical to W, then conventional 1 

tests of 0=λ  assuming an alternative model of the form e+= βXy  is a misspecification. 2 

[Anselin et al. (1996)] derive a )1(2χ  Lagrange Multiplier (LM) test of 0=λ  robust to possibly 3 

nonzero φ   in (4), which has substantially superior performance in Monte Carlo evaluations 4 

compared to the non-robust LM test.  5 

 6 

Hypothesis tests, and any subsequent parameter estimations, are conditional on the assumed form 7 

of the spatial weights matrix W in (3). We examine three forms herein. Denote the great circle 8 

distance between the grid cell centers from which observation i and observation j are drawn as 9 

ijg . Weighting matrix 1 (W1) is computed such that each element is ijg/1 and the rows are 10 

standardized to sum to one. Weighting matrix 2 (W2) is computed such that each element is 11 

ijg/1  and the rows are standardized to sum to one. Weighting matrix 3 (W3) is computed such 12 

that each element is 2
/1 ijg  and the rows are standardized to sum to one. Results were similar 13 

without row-standardization but convergence problems arose as the likelihood function had non-14 

concave segments, so these results are omitted. Matrix W1 assumes the influence of adjacent 15 

cells diminishes at a hyperbolic rate. Matrix W2 assumes the inter-cell influence declines more 16 

slowly with distance while W3 assumes it declines more rapidly with distance. 17 

 18 

 19 

2. Results 20 

Table 1 shows the robust LM test values for weighting matrices W1—W3. In none of the three 21 

cases is there evidence of significant spatial autocorrelation in the residuals of (1). The inverse-22 



 7 

square weighting rule, which allows for the slowest decline in the influence of adjacent grid cells 1 

as the distance increases, shows the largest test score, though it is still insignificant. 2 

 3 

Analysis of the model dependent variables (y) did indicate spatial dependence. This implies that 4 

the right hand side variables in (1) explain the spatial dependence sufficiently to leave an error 5 

term that is not itself spatially autocorrelated.  6 

 7 

For the sake of completeness, the regression model was re-run allowing for non-zero λ , also 8 

applying [White’s (1980)] correction for heteroskedasticity, using a maximum likelihood routine 9 

developed by [Pisati (2001)]. The results are in Table 2. The coefficients are stable, as are the 10 

inferences, except for im , iy  and ic  under model W3, which fall to weak significance, and the 11 

joint test of anthropogenic surface processes also falls to weak significance (P = 0.067). But in 12 

all three cases the joint test of inhomogeneities and anthropogenic surface processes remains 13 

significant (P <0.01). The stability of the parameters indicates that the calculation of adjusted 14 

surface temperature trends still shows a large drop in the unweighted mean, from 0.30 C per 15 

decade to 0.17—0.18 C per decade. Weighting the grid cells by the cosine of latitude yields a 16 

drop from 0.27 C per decade to 0.12—0.14 C per decade (not shown).  17 

 18 

3. Conclusions 19 

MM07 reported evidence that gridded surface climate data are contaminated with extraneous 20 

signals due to inhomogeneities and anthropogenic surface processes, which may account for half 21 

the measured warming trend after 1980. This paper presents a test of the MM07 model for 22 

exaggerated significance due to spatial autocorrelation in the residuals. Across numerous 23 



 8 

weighting specifications a robust LM statistic fails to reject the null hypothesis that no spatial 1 

autocorrelation is present, indicating that the estimations and inferences reported in MM07 are 2 

not affected by spatial dependence of the surface temperature field. Even if the model is extended 3 

to treat spatial autocorrelation—at a risk of overspecification—the original results remain intact, 4 

especially the finding of significant contamination implying an overall warming bias that is large 5 

relative to the trend in the gridded data itself. 6 
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Table 1. Hypothesis tests for spatial autocorrelation in model (1) of surface temperature trends 5 

and inhomogeneity-anthropogenic surface process biases. The null hypothesis is no spatial 6 

dependence in the model residuals.  7 

 8 
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Weighting 

Matrix 

Weighting Formula Robust LM Score (P value) 

W1 Inverse-linear 0.032 (0.858) 

W2 Inverse-square root 2.564 (0.109) 

W3 Inverse-squared 0.094 (0.759) 
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 1 

 

Variable 

 

Original 

W1 

Inverse Linear 

W2 

Inverse sqrt 

W3 

Inverse sq 

     

trop 0.8631 0.8231 0.8598 0.7515 

 (8.62) (11.46) (13.16) (7.41) 

slp 0.0044 0.0048 0.0045 0.0053 

 (1.02) (1.50) (1.44) (1.45) 

dry 0.5704 0.8337 0.5813 1.4746 

 (0.10) (0.21) (0.15) (0.33) 

dslp -0.0005 -0.0007 -0.0005 -0.0014 

 (-0.09) (-0.18) (-0.13) (-0.31) 

water -0.0289 -0.0306 -0.0290 -0.0358 

 (-1.37) (-1.50) (-1.44) (-1.70) 

abslat 0.0006 0.0008 0.0006 0.0014 

 (0.51) (0.85) (0.70) (1.23) 

g 0.0432 0.0446 0.0434 0.0438 

 (3.36) (3.12) (3.08) (2.92) 

e -0.0027 -0.0025 -0.0027 -0.0021 

 (-5.14) (-4.00) (-5.21) (-2.54) 

x 0.0041 0.0033 0.0041 0.0019 

 (1.66) (1.04) (1.25) (0.63) 

p 0.3839 0.3641 0.3822 0.3162 

 (2.72) (2.91) (3.13) (2.35) 

m 0.4093 0.3589 0.4054 0.2594 

 (2.39) (2.56) (2.92) (1.68) 

y -0.3047 -0.2669 -0.3018 -0.1961 

 (-2.22) (-2.41) (-2.76) (-1.64) 

c 0.0062 0.0056 0.0061 0.0042 

 (3.45) (2.91) (3.32) (1.86) 

Constant -4.2081 -4.6341 -4.2481 -5.1241 

 (-0.96) -1.42 -1.35 -1.39 

N 440 440 440 440 

R
2 

0.53    

Log likelihood 139.22 141.45 139.25 147.84 

P(I) 0.000 0.000 0.000 0.005 

P(S) 0.000 0.002 0.001 0.067 

P(all) 0.000 0.000 0.000 0.007 

Adj surf 0.17 0.17 0.17 0.18 

Table 2. Coefficient estimates for equation (1). First column: as reported in MM07. Columns 2—2 

4, allowing for spatial autocorrelation using weighting schemes described in text. Coefficient t-3 

statistics underneath in parentheses, based on standard errors that account for heteroskedasticity. 4 

Bold denotes significant at 95%. Variable codes: g: 1979 GDP density; e: educational 5 

attainment; x: count of missing months; p: % change in population; m: %income growth; y: % 6 

growth in GDP; c: % growth in coal consumption. ll  = loglikelihood value. P(I) = prob value of 7 
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test that all inhomogeneity factors (g—x) are jointly zero; P(S) = prob value of test that all 1 

surface process coefficients (p—c) are jointly zero; P(all) = prob value of test that g—c are 2 

jointly zero. Adj. surf: unweighted mean surface temperature trend across 440 grid cells after 3 

removing extraneous effects following methodology in MM07.  4 
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