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Abstract
Global surface temperature anomalies post-1958 are examined for evidence of significant
trends. The routine application of a linear least-squares method is critiqued. Testing for
model misspecification in the form of serial correlation and heteroskedasticity in the
residuals leads to consideration of a piecewise trend with lagged anomalies and a linear
model of the error variance. While the naï ve least-squares model suggests a highly
significant trend post-1979, correcting the known specification errors leads to the finding
of a reduced trend magnitude and evidence that the trend is insignificant, i.e. within the
bounds of random noise. This points to the need for careful treatment of time series
variables in order to avoid spurious inference.
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Inference About Trends in Temperature Data After Controlling for Serial
Correlation and Heteroskedastic Variance

1. Introduction: Trends as a Statistical Model

Denote a time series of temperature anomalies with ta . We are often interested in seeing if the

mean of ta  is evolving over time. The wide availability of statistical software has made the basic linear

trend regression:

tt eta ++= 10 ββ (1)

a popular technique, but it is subject to much abuse. We must always remember that it is a statistical model

and the results printed by a computer package are based on assumptions which the researcher is expected

to know. It is not uncommon to see the parameters of (1) estimated using a technique like ordinary least

squares (OLS) then conclusions drawn about the “significance” of the estimated slope parameter 1β̂  based

on the printed t- or F-statistics. Such inferences are only valid if (1) satisfies some restrictive conditions

which  in the case of time series data rarely hold. The statistical model takes the form tt eta =−− 10 ββ

and the printed t and F statistics take for granted that te  is a random variable independently drawn from a

Gaussian distribution with mean zero and a constant variance 2σ . In effect, this assumes that there is no

relationship among the ta ’s between adjacent periods and that the variance of the unexplained portion of

ta  remains constant over the whole sample. These assumptions can be tested. The OLS procedure

generates an estimated standard error for 1β̂ , here denoted 1ŝ  and if the assumptions of the statistical

model hold true the ratio 11 ˆˆ sβ  follows an exact t distribution and inference about significance can be
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made using standard tables. If the assumptions about the distribution of te  are violated then the ratio

11 ˆˆ sβ  does not follow a t distribution except asymptotically, hence for finite samples t tables are not

guaranteed to be reliable for inference about significance. Furthermore, since t is not stationary, the finite

sample bias of 1β̂  converges to zero at a different rate than that of 0β̂ , making application of standard

asymptotic statistical methods complex in a trend model. On these points see Hamilton (1994, ch. 16).

If model assumptions are found not to hold some attention must be paid to the reasons why. There

are purely statistical corrections that can be used to isolate a Gaussian component of te , allowing

inferences about 11 ˆˆ sβ . The term for this class of models is Generalized Least Squares (GLS). But the

non-normality of the residuals often points to an error in the specification of the trend equation. A time

series model that makes use of information about the physical process being modeled, and which yields

independent and/or homoskedastic residuals without applying special statistical corrections, would be

considered a better procedure for detecting any trends in the data.

In the sections to follow we discuss issues in the specification of a trend model. After considering

what the term “trend” means we look at the kinds of tests that must be applied to justify a model like (1).

Since this equation usually does not apply to temperature anomaly data we discuss alternate strategies and

then show how they affect empirical estimates of the magnitude and significance of the trend coefficient in

surface and tropospheric anomaly data. It turns out that the better the fit of the trend model, and the closer

we get to Gaussian residuals, the smaller is the estimated trend and the less significant is the coefficient.

2. Trends and Other Changes in the Mean

According to equation (1), a trend implies a steady pattern of increase in the conditional mean of

ta by the amount 1β  each period. In other words, using equation (1) to summarize the evolution of the

mean forces upon the data the interpretation that there is a continuing tendency for the mean to rise by 1β

each period. In Figure 1 there are some examples of problematic data configurations that might lead to
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detection of a false “trend” (shown by the heavy dashed line) based on a naï ve application of (1). The step

function in panel A is not a trend in the sense that there is not a continuing, steady pattern of increase in the

mean of ta . Instead the variable is constant over time, with a single step arising from a permanent one-time

change in the mean. The data in panel B show a decreasing tendency interrupted by a single upward step.

What, then, is the “trend”? It is reasonable to argue that the trend is the downward slope, since that is the

continuous tendency, and the step is a one-time shock, which changes the mean of the data series but not

the tendency of the mean to decline over time. In panel C the solid part represents the data for which we

have observations, and the dotted line represents the unobserved past and future. Again model (1) would

imply an upward trend, but the data are more properly interpreted as cyclical.

When discussing trends in temperature anomaly data it is usually against the background of

concern about enhanced radiative forcing due to carbon dioxide concentrations. Since these have been

smoothly trending upward since the measurements became available from the Mauna Loa observatory the

detection of a smooth upward trend in the global average temperature anomaly would be suggestive of a

relationship between temperature and CO2 concentrations. If temperatures follow a pattern like that shown

in Figure 1B this would not suggest a relationship between the two, since the smooth portion of the trend is

downwards and the upward movement is a single large event, not a continuous sequence of small events. If

we had an alternative explanation for the discontinuity in temperatures (such as the changing mode of a

major internal climate oscillation) this effect should be removed when estimating the trend magnitude. The

simplest way to do so is to break the sample up into “before” and “after” segments.

In terms of global temperature data, the 1978 Pacific Climate Shift has been identified as an

important discontinuity that produced an upward step in many temperature indicators (Ebbesmeyer et. al.

1991). The event was driven by a change in the circulation pattern of the Pacific ocean, not by a change in

the optical depth of the atmosphere. However it may create the appearance of a trend if the data are not

properly analysed. Table 2.3 in the Third Assessment Report of Working Group I of the Intergovernmental
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Panel on Climate Change (IPCC 2001 p. 122) shows a group of trend estimators for surface and

atmospheric temperatures in which the trends are separately computed over 1958-2000, 1958-1978 and

1979-2000. The lower tropospheric weather balloon record produced by the US National Oceanic and

Atmospheric Administration (NOAA) has a cooling trend of –0.08 oC per decade from 1958 to 1978 and a

continued cooling trend of –0.03 oC per decade from 1979 to 2000. Yet they find a warming trend over the

entire 1958 to 2000 period of +0.07 oC per decade! Similarly the combined balloon-satellite record

produced by the UK Met Office (denoted UKMO) has a trend from 1958 to 1978 of –0.03 oC per decade

and from 1979 to 2000 of +0.03 oC per decade. Yet over the whole sample the estimated “trend” is +0.11

oC per decade. Clearly the lower tropospheric data follow a pattern like that in Figure 1A or B. The event

in 1979 is likely the Pacific Climate Shift and the “trend” in the data is zero or negative.

Unfortunately this crucial information is only available to a careful reader of the Table in the body

of the report. It is left out of the Summary for Policy Makers, which says only: “Since the late 1950s (the

period of adequate observations from weather balloons) the overall global temperature increases in the

lowest 8 kilometres of the atmosphere and in surface temperatures  have been similar at 0.1 oC per decade.”

(p.4) The statement is, to say the least, misleading. The data show a tropospheric cooling trend interrupted

by discrete step in 1978. Clearly one must be careful in defining what is meant by a “trend” in data that

follows patterns as in Figure 1.

2. Statistical Corrections for Autocorrelated Errors and Heteroskedastic Variances

If (1) is applied to the data in panels A, B or C, the residual te  will no longer be independent over

time. The realized values will follow a systematic pattern represented by the vertical distance between the

data line and the heavy dashed “trend” line. Across most of the data set, an observation of one period’s

value of te  plus a Gaussian noise term tε  could provide a good predictor of 1+te , using tte ερ + , where

0< ρ <1. Therefore an improvement to (1) is the GLS model
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ttt eta ερββ +++= −110 (2)

where )1(1011 −−−= −− tae tt ββ  and tε  is assumed to be independent and identically distributed with a

zero mean and constant variance. If (2) is the “true” model and 0< ρ <1, then use of (1) will generate

variance estimates on 1β̂  that are biased too small, creating a tendency towards a false finding of

“significance” in the trend (Davidson and MacKinnon 1993 Ch. 10). Model (2) is referred to in

econometrics as an AR(1) model, denoting the first-order autoregressive process which replaces te  from

(1).

A test of (2) against the alternative (1) can be carried out using a Lagrange Multiplier (LM) test.

The residuals from one model are regressed on the right hand side variables plus themselves lagged once.

A t-statistic on the lagged residuals is an asymptotic test of the null hypothesis that there is no serial

correlation of residuals. For instance, if (1) is estimated, yielding residuals tê , then from the regression

1210 ˆˆ −++= tt ete φφφ (3)

the t-statistic on the OLS estimator 2φ̂  tests the null hypothesis that the residuals are not serially correlated.

Another generalization of (1) can be used to treat the problem of autoregressive-conditional

heteroskedasticity (ARCH) in the residuals te . ARCH implies that the variance of the error terms changes

over the sample, which violates another of the assumptions on which inference in the linear trend model is

based. A test for ARCH processes in the error terms uses the Gauss-Newton Regression (GNR) procedure

(Davidson and MacKinnon 1993). The residuals from (1) are squared then regressed on themselves lagged

g times:
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110

2 ˆˆˆ gtgtt eee −− +++= θθθ L (4)

where g represents the order of the ARCH process. An F test of the joint significance of the estimated iθ

parameters is a test of the absence of ARCH in the error process. If the residuals of (1) do contain an

ARCH process, the variance estimator of OLS is biased and t tests again are potentially unreliable for

determining the significance of the trend.

GLS corrects statistical problems related to the fact that (1) fails to use all the information

contained in the residuals to guide inference about 1β̂ . But detection of autoregressive and/or ARCH errors

often points to a specification error, in this case that a linear trend model imposes the wrong structure on

the variable being analysed. If this is true, application of an improved specification may solve the problem

of autocorrelated residuals and/or ARCH errors without resorting to GLS.

3. Alternate Time-Series Specifications

The atmospheric system that gives rise to globally-averaged anomalies is subject to periodic shocks

denoted tv  that integrate over time and have impacts distributed across multiple periods. There may also be

a tendency for the mean to evolve over time according to some function )(tf . Therefore we can use a

model in which a weighted sum of present and future monthly anomalies follows f (t)+ tv , which we write

as )(tfva titip +=Σ +ψ . Using a linear specification of f and rearranging slightly we can get the alternate

form

tptptt etaaa ++=−−− −− 1011 )( µµφφ L (5)



8

where 0/ψtt ve = . In this case an autoregressive (AR) process in ta  with p lags is driven by a linear trend

plus a constant (which may be zero) plus a Gaussian error. The instantaneous effect of t on ta  is given by

the estimate 1µ̂  while the long-run trend ( dtad it /+Σ  for 0≥i ) is given by

)ˆ1/(ˆ1 ipφµ Σ− . (6)

If we have reason to believe that the process generating the temperature anomalies has undergone a

structural change we can replace t1µ  with a piecewise linear function ( Dtt αδ + ) where D is a dummy

variable taking the value 0 in the period up to the structural break and 1 thereafter. Introducing this form

allows the trend to differ between periods: in the first, where D=0 it is simply δ  and in the second where

D=1 it is αδ + . In addition the constant term can be augmented by replacing it with Dλµ +0  so that the

constant in the second period is λµ +0 .

Combining these and rearranging slightly yields the augmented ARMA model, denoted

ARMAX(p,0):

tptptt eDttaaDa +++++++= −− αδφφλµ L110 (7).

Note that with appropriate restrictions on parameters this reduces to (1), and these restrictions can be

tested. It is also possible to test the residuals te  from (7) for the presence of ARCH processes, and if need

be apply corrections.  This is discussed in the results section.

4. Empirical Results
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Model (1) was estimated on global surface air temperature anomaly data from January 1959 to

December 2000. The data were obtained from the UK Hadley Centre (2001). A graph of the data is in

Figure 2. All estimations were done using the econometrics software SHAZAM (White 1993). Table 1

shows that a simple linear model yields a decadal trend of 0.11 oC/decade and the ratio of the trend

coefficient to its OLS-estimated standard deviation is 19.6. If this ratio follows a t distribution it would be

highly significant. Application of the LM test (equation 3) yields a t statistic of 26.5, decisively rejecting

the null hypothesis of no serial correlation in the errors. Application of the GNR method (equation 4) with

one lag on the squared residuals yields a t-statistic of 12.6, rejecting the null hypothesis of homoskedastic

errors. Hence the t-test from (1) is unreliable in this case and the model must be respecified.

Adding a break point at January 1979 to make the time trend piecewise linear improved the fit of

the model, raising the 2R  from 0.43 to 0.57 and the log-likelihood value from –2245 to –2169. As shown

in Table 2, the pre-1979 trend is negative and apparently significant (–0.06 oC/decade) and the post-1979

trend is positive and apparently significant at 0.16 oC/decade with a t-statistic of 12.5. However the LM

test of no serial correlation has a t-statistic of 20.8 and the GNR test of no homoskedasticity has a t-

statistic of 9.3, indicating that the model remains misspecified and inference on the trend estimator is still

unreliable.

Equation (7), the ARMA model with piecewise-linear trend, was then estimated using lags on ta  at

1, 2, 8, 24 and 27 months. These lags were chosen by gradually extending the lag length while deleting

some insignificant terms and observing the Akaike Information Criterion (AIC). The AIC is

NK /2)ˆln( 2 +σ  where 2σ̂  is the variance of the model estimate, K is the number of estimated parameters

and N is the sample length. The AIC declines as the fit improves and rises as more parameters are added or

the sample declines, so a minimum-AIC rule is applied for model selection. The results are shown in Table

3. The 2R  value rises substantially to 0.80 and the log likelihood value rises from –2169.5 to –1876.1. The
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coefficient on the pre-1979 trend variable loses significance, however the post-1979 trend differential just

remains significant at 5%. The instantaneous trend term has a small but apparently significant t-statistic

Testing the significance of the long-run trend term

2724821 φφφφφ
αδ

++++
+

is not straightforward since 0)/()( =Σ+ iφαδ  is not a linear restriction. SHAZAM uses an asymptotic

Wald statistic which yields a P-value based on comparison with 2χ  tables. However the finite sample

distribution of this statistic is not known, so this test may be unreliable. Chebychev’s inequality (Rice

1988) yields an upper bound on the P-value which is valid for all sample sizes regardless of the distribution

of the Wald statistic, so this is also reported. The P-value for the significance of the long-run trend is

<0.001 according to the assumption of a 2χ distribution, and no higher than 0.084 regardless of the

distribution.

The LM test now shows no serial correlation in the residuals (t = 0.90) but the GNR test shows at

least first-order ARCH (t = 2.02). Since there is no serial correlation a GLS correction addressing only the

heteroskedasticity can be applied. If te  is distributed ),0( thN  where th  is a function that varies over time,

then the GLS correction involves replacing the residual from (7) with

t

t
t

h

e
=ε . (8)

Then since )1,0(~ Ntε  inference based on the parameters and their computed standard errors is valid. A

number of specifications for th  were examined, and the lowest AIC value was found for



11

jtjjttt abwwwh −−− Σ+++= 2
22

2
110 εε (9)

where j = (1, 2, 8, 24, 27). This also eliminates all remaining ARCH. Time trend terms were never

significant in (9).

Equation (7), augmented with (8) and (9) was estimated using a maximum likelihood routine. The

results are in Table 4. The pre-1979 trend is insignificant, as are the post-1979 trend differential and the

1979-2000 instantaneous trend. The post-1979 long-run trend is 0.1261 oC/decade, and has a P-value of

between 0.005 and 0.126. Since the trend coefficients in this model are insignificant and the evidence for

the transformed trend is ambiguous, significance was also tested using a likelihood ratio (LR) statistic. The

LR test is )(2 UR LLFLLF −−  where RLLF  denotes the log likelihood function value with restrictions

imposed ( 0=+ αδ ) and ULLF denotes that in the original, unrestricted form. The statistic asymptotically

follows a 2χ  distribution with 2 degrees of freedom (the number of restrictions). The value of the test is

3.506 which has a P value of 0.173 (the 5% significance level is 5.991). The model with no time trend (but

including a separate intercept for the post-1979 period) is not rejected against the alternative with trend.

5. Conclusions

The naï ve model (1) yields an estimated decadal “trend” of 0.11 oC/decade in the surface data

since 1958 which is considered highly significant on the basis of a t ratio of 19.58. However  tests for

independence and homoskedasticity of the residuals strongly reject, leading us to search for improvements

in specification. A piecewise-linear model suggests a post-1979 trend of 0.16 oC/decade with a t ratio of

12.5, again highly significant. However, evidence of misspecification persists. Moving eventually to an

ARMA model with correction for ARCH residuals resolves the specification problems, reduces the post-

1979 measured surface warming rate to 0.13 oC/decade. A Wald test suggests significance may be
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maintained but the upper bound is in the insignificant range. A likelihood ratio test does not reject the

hypothesis of no trend in the surface data pre- or post-1979. That is, any observed upward movement is

consistent with random noise in the temperature data.

An important conclusion of this paper is that properties of time-series variables must be taken into

account when testing for trends. Inference based on naï ve modeling strategies can easily lead to unreliable

conclusions. In the case of surface temperatures analyzed here, the conventional methods based on OLS

lead to high trend estimates and artificially small standard errors. Improved model specification and

corrected statistical modeling yields a lower trend magnitude and evidence against statistical significance.

This echoes the concerns of Zheng and Basher (1999) who have also warned against the dangers of

erroneous trend detection based on improper use of time series climatological data.
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Table 1: Empirical Estimates for Equation 1

tt eta ++= 10 ββ
Estimate

(t statistic) Standard Error

trend coefficient ( 1β̂ ) 0.1089
(19.58)

0.0056

R-squared 0.4272
Log-Likelihood Function -2245.32

LM Test for serial correlation (t) 26.54
GNR Test for heteroskedasticity (t) 12.63

Trend estimate is degrees C per decade

Table 2: Empirical Estimates for Equation 1 Augmented with a Piecewise-Linear Time Trend

tt eDttDa ++++= αδλβ 0

Estimate
(t statistic) Standard Error

1958-78 trend coefficient (δ ) -0.0614
(4.39)

0.0140

1979-2000 trend differential (α ) 0.2262
(11.75)

0.0193

1979-2000 trend ( αδ + ) 0.1649
(12.47)

0.0132

R-squared 0.5731
Log-Likelihood Function -2169.46

LM Test for serial correlation (t) 20.81
GNR Test for heteroskedasticity (t) 9.35

Trend estimates are degrees C per decade
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Table 3: Empirical Estimates for Equation 7 (ARMA model)

tptptt eDttaaDa +++++++= −− αδφφλµ L110

Estimate
(t statistic) Standard Error

1958-78 trend coefficient (δ ) -0.0110
(0.89)

0.0125

1979-2000 trend differential (α ) 0.0437
(1.96)

0.0223

1979-2000 instantaneous trend ( αδ + ) 0.0327
(2.14)

0.0153

1979-2000 long-run trend ( )1/()( iφαδ Σ−+ ) 0.1481

Wald P-value on long-run trend 0.000
Chebyshev P-value on long-run trend 0.084

R-squared 0.8028
Log-Likelihood Function -1876.05

LM Test for serial correlation (t) 0.90
GNR Test for heteroskedasticity (t) 2.02

Trend estimates are degrees C per decade.
Estimates of iφ  are not shown.
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Table 4: Empirical Estimates for Equations 7-9 (ARMA + Heteroskedasticity Model)

ttptptt heDttaaDa /110 +++++++= −− αδφφλµ L

Estimate
(t statistic) Standard Error

1958-78 trend coefficient (δ ) -0.0111
(0.95)

0.0117

1979-2000 trend differential (α ) 0.0382
(1.82)

0.0210

1979-2000 instantaneous trend ( αδ + ) 0.0271
(1.85)

0.0.0146

1979-2000 long-run trend ( )1/()( iφαδ Σ−+ ) 0.1261

Wald P-value on long-run trend 0.005
Chebyshev P-value on long-run trend

Likelihood Ratio Test (P-value) on trend coefficients

0.126

0.173

R-squared 0.8019
Log-Likelihood Function -1861.33

Trend estimates are degrees C per decade.
Estimates of iφ , iw  and ib  are not shown.
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Figure 1. Data patterns that can be inappropriately labeled “positive trends” based on use of linear
estimator in equation (1).

A B

C
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Figure 2. Global Surface Temperature Anomalies January 1958 to December 2000. Source: Hadley Centre
(2001).


